

Buddha Institute of Technology

Gorakhpur Department of Mechanical Engineering ALLOTTMENT BASED ON COMPETENCY SKILLS Academic Session: August – January 2023

Name of the Staff	Mr. Puneet Kumar Bhatia
Area of Specialization	Maintenance Engineering
Subject Allotted	Energy Science & Engineering

Sl. #	Course Code	Course Title	Semester	Theory/Practical
1.	KOE033	Energy Science & Engineering	III Semester	Theory

HOD

Course Outcome and Programme Outcome

Program	: B. Tech.
Branch	: ME
Semester	: III
Session	: 2022-23
Name of the Course	: Energy Science & Engineering
Code	: KOE033
Name of the Course Instructor	: Mr. Puneet Kumar Bhatia
Designation	: Assistant Professor
Department	: Mechanical Engineering

Description of the Course Outcome:

СО	After completion of the course students will be able to:
KOE-033.1	Understand the Units and scales of energy use, Mechanical energy and transport, Heat energy and Solid-state phenomena including photo, thermal and electrical aspects
KOE-033.2	Understand the Fundamental forces in the universe, Quantum mechanics relevant for nuclear science
KOE-033.3	Understand the Introduction to solar energy, fundamentals of solar radiation and its measurement aspects, Basic physics of semiconductors, first Generation Solar Cells, Second Generation Solar Cells, Third Generation Solar Cells
KOE-033.4	Understand the Conventional & non-conventional energy source
KOE-033.5	Understand the Systems and Synthesis, concept of Green Building and Green Architecture, Energy Audit of Facilities and optimization of energy consumption

Buddha Institute	Gorakhpur			SISTIUT	05 716		
Department: Mechanical Engineering					KONN SOUTH		
Academic Semester: August – January 2022							
Semester: III	Section: A	A Course Code: KOE-033			3 Course: Energy Science & Engineering		
Course Instructor: Mr. Puneet Kumar Bhatia Contac				t Hours /week: 06 # of credits: 04			
CIE Marks: 30 SEE Marks:70)		Exam Hour	rs: 03	

Prerequisites if any:								
Code No	Course Name	Description	Semester					
Nil	Nil	Nil	Nil					

Content delivery:	Chalk & Board, DLP, System/Laptop with social media videos
-------------------	--

COURSE SYLLABUS:						
ModuleNo	Contents of Module	Hrs	COs			
1	Energy and its Usage: Units and scales of energy use, Mechanical energy and transport, Heat energy: Conversion between heat and mechanical energy, Electromagnetic energy: Storage, conversion, transmission and radiation, Introduction to the quantum, energy quantization, Energy in chemical systems and processes, flow of CO2, Entropy and temperature, carnot and Stirling heat engines, Phase change energy conversion, refrigeration and heat pumps, Internal combustion engines, Steam and gas power cycles, the physics of power plants. Solid-state phenomena including photo, thermal and electrical aspects	16	C01			
2	Nuclear Energy: Fundamental forces in the universe, Quantum mechanics relevant for nuclear physics, Nuclear forces, energy scales and structure, Nuclear binding energy systematics, reactions and decays, Nuclear fusion, Nuclear fission and fission reactor physics, Nuclear fission reactor design, safety, operation and fuel cycles	12	CO2			
3	Solar Energy: Introduction to solar energy, fundamentals of solar radiation and its measurement aspects, Basic physics of semiconductors, Carrier transport, generation and recombination in semiconductors, Semiconductor junctions: metal-semiconductor junction & p-n junction, Essential characteristics of solar photovoltaic devices, First Generation Solar Cells, Second Generation Solar Cells, Third Generation Solar Cells	12	CO3			
4	Conventional & non-conventional energy source: Biological energy sources and fossil fuels, Fluid dynamics and power in the wind, available resources, fluids, viscosity, types of fluid flow, lift, Wind turbine dynamics and design, wind farms, Geothermal power and ocean thermal energy conversion, Tidal/wave/hydro power	16	CO4			
5	Systems and Synthesis: Overview of World Energy Scenario, Nuclear radiation, fuel cycles, waste and proliferation, Climate change, Energy storage, Energy conservation. Engineering for Energy conservation: Concept of Green Building and Green Architecture; Green building concepts, LEED ratings; Identification of energy related enterprises that represent the breath of the industry and prioritizing these as candidates; Embodied energy analysis and use as a tool for measuring sustainability. Energy Audit of Facilities and optimization of energy consumption	16	CO5			

KOE-033.1	Understand the Units and scales of energy use, Mechanical energy and transport, Heat energy and Solid-state phenomena including photo, thermal and electrical aspects
KOE-033.2	Understand the Fundamental forces in the universe, Quantum mechanics relevant for nuclear science
KOE-033.3	Understand the Introduction to solar energy, fundamentals of solar radiation and its measurement aspects, Basic physics of semiconductors, first Generation Solar Cells, Second Generation Solar Cells, Third Generation Solar Cells
KOE-033.4	Understand the Conventional & non-conventional energy source
KOE-033.5	Understand the Systems and Synthesis, concept of Green Building and Green Architecture, Energy Audit of Facilities and optimization of energy consumption

Mapping of CO v/s PO:

	P0-1	PO-2	PO-3	PO-4	PO-5	P0-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
KOE-033.1	3	2	3	-	-	-	-	-	-	-	-	-
KOE-033.2	3	2	3	-	-	-	-	-	-	-	-	-
KOE-033.3	3	2	3	-	-	-	-	-	-	-	-	-
KOE-033.4	3	2	3	-	-	-	-	-	-	-	-	-
KOE-033.5	3	2	3	-	-	-	-	-	-	-	-	-

Correlation levels: 1-Slight (Low) 2-Moderate (Medium)

3-Substantial (High)

Mapping of CO v/s PSO:

	PSO1	PSO2
KOE-033.1	3	3
KOE-033.2	3	3
KOE-033.3	3	3
KOE-033.4	3	3
KOE-033.5	3	3

NA
NA

Assessment Methodologies:

Sl. No.	Description	Туре
1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect
6	Employers feedback	Indirect

LESSON PLAN

Lecture #	Module #	Topics	RBT Levels	Course Outcome	Planned Date	Actual Date	Faculty Sign	Remark
				Mapping		Bute	31211	J
1.		Energy and its Usage: Units and scales of			29/8/22			
2.		energy use Mechanical energy and transport			31/8/22			
3.		Conversion between heat and mechanical energy			1/9/22			
4.		Storage, conversion flow of CO2 ,Transmission and radiation			2/9/22			
5.		Transmission and radiation Energy quantization			3/9/22			
	1	Tutorial-1	L3	C01	5/9/22			
6.		Energy in chemical systems and processes			6/9/22			
7.		Entropy and temperature			7/9/22			
8.		Carnot heat engine			8/9/22			
9.		Stirling heat engines,			9/9/22			
10.		Phase change energy conversion			10/9/22			
		Tutorial-2			12/9/22			

	Refrigeration and heat			13/9/22		
11.	pumps					
	Internal combuction			14/0/22		
12.	engines			14/9/22		
	Gas power cycles			15/9/22		
	Identification of energy					
13.	represent the breath of the					
	industry and prioritizing					
	these as candidates					
14	Steam power cycles			16/9/22		
	The physics of power			10/0/22		
	plants Embodied energy			1)/)/22		
15	analysis and use as a					
15.	tool for measuring					
	sustainability,					
	Tutorial-3			20/9/22		
16.	Solid-state phenomena			21/9/22		
17	Thermal and electrical			22/9/22		
	aspects			22/0/22		
18.	Fundamental forces in			23/9/22		
	the universe					
19	Quantum mechanics relevant for nuclear			24/9/22		
17.	physics,					
20.	Nuclear forces, energy scales and structure			26/9/22		
	Tutorial-4			27/9/22		
21.	Energy scales and structure			28/9/22		
22.	Energy scales and structure	L3	CO2	30/9/22		
	Quantum mechanics			1/10/22		
23.	relevant for nuclear physics. Nuclear forces					
	Quantum mechanics			3/10/22		
24.	relevant for nuclear					
	Tutorial-5			5/10/22		
	X X X					
25	Nuclear binding energy systematics reactions			6/10/22		
23.	and decays					

26.		Nuclear binding energy systematics, reactions and decays			7/10/22		
27.		Nuclear binding energy systematics, reactions and decays			8/10/22		
28.		Nuclear fusion, Nuclear fission			8/10/22		
29.		Reactor design, safety, operation and fuel cycles			10/10/22		
		1 000111-0			12/10/22		
30.		Solar Energy: Introduction to solar energy			13/10/22		
31.		Introduction to solar energy			14/10/22		
32.		Fundamentals of solar radiation and its measurement aspects			15/10/22		
33.		Carriertransport,generationandrecombinationinsemiconductors			15/10/22		
34.		Carriertransport,generationandrecombinationinsemiconductors			17/10/22		
	2	Tutorial-7			19/10/22		
35.		Semiconductor junctions Metal-semiconductor junction			20/10/22		
36.		P-N junction Embodied energy analysis and use as a tool for measuring sustainability,	L3	CO3	21/10/22		
37.		Essential characteristics of solar photovoltaic devices, First Generation Solar Cells			22/10/22		
		Tutorial-8			22/10/22		

38.		Essential characteristics of solar photovoltaic devices, First Generation Solar Cells			29/10/22		
39.		Essential characteristics of solar photovoltaic devices, First Generation Solar Cells			31/10/22		
40.		Essential characteristics of solar photovoltaic devices, First Generation Solar Cells			4/11/22		
41.		Second Generation Solar Cells, Third Generation Solar Cells			5/11/22		
		Tutorial-9			5/11/22		
42.		Conventional&non-conventional energysource:Conventional &non-conventional energysource			7/11/22		
43.		Biological energy sources and fossil fuels			9/11/22		
44.		Fluid dynamics and power in the wind			10/11/22		
45.		Fluid dynamics and power in the wind	L2	CO4	11/11/22		
46.	3	Fluid dynamics and power in the wind			12/11/22		
		Tutorial-10			12/11/22		
47.		AvailableresourcesEmbodiedenergyanalysisanduseas atoolformeasuringsustainability,			17/11/22		

48.		Fluids, viscosity Identification of energy related enterprises that represent the breath of the industry and prioritizing these as candidates			18/11/22		
49.		Types of fluid flow, lift			19/11/22		
50.		Wind turbine dynamics and design			19/11/22		
51.		Wind farms			21/11/22		
		Tutorial-11			22/11/22		
52.		Geothermal power Engineering for Energy conservation			23/11/22		
53.		Ocean thermal energy conversion Energy storage,			24/11/22		
54.		Systems and Synthesis: Overview of World Energy Scenario			25/11/22		
55.	4	fuel cycles, waste proliferation, Climate change			26/11/22		
57.		Nuclear radiation proliferation, , Climate change			26/11/22		
58.		Concept of Green Building and Green Architecture	L3	CO5	28/11/22		
59		Identification of energy related enterprises that represent the breath of the industry			30/11/22		
60.		Green building concepts, LEED ratings			1/12/22		

61.	prioritizing these as candidates	2/12/22
62.	Energy conservation	3/12/22
63.	Climate change proliferation	6/12/22
64.	Concept of Green Building	7/12/22
65.	Green Architecture	8/12/22
66.	Identification of energy related enterprises that represent the breath of the industry and prioritizing these as candidates	9/12/22
67.	Energy Audit of Facilities and optimization of energy consumption	10/12/22
68.	Energy Audit of Facilities and optimization of energy consumption	12/12/22
69.	Energy Audit of Facilities	13/12/22
70.	optimization of energy consumption	14/12/22
	Tutorial-12	15/12/22
71.	Revision	16/12/22
72.	Revision	17/12/22
73.	Revision	19/12/22
74.	Revision	20/12/22
75.	Revision	21/12/22
76.	Revision	23/12/22
77.	Revision	27/12/22
78.	Revision	30/12/22

79.	Revision	31/12/22
80.	Revision	6/01/23
81.	Revision	7/01/23
82.	Revision	9/01/23
83.	Revision	10/01/23
84.	Revision	11/01/23
85.	Revision	12/01/23
86.	Revision	13/01/23
87.	Revision	15/01/23
88.	Revision	18/01/23
89.	Revision	19/01/23
90.	Revision	20/01/23
91.	Revision	21/01/23
92.	Revision	23/01/23
93.	Revision	24/01/23
94.	Revision	25/01/23
95.	Revision	26/01/23

*L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analysing; L5 – Evaluating; L6 - Creating

Literature:

Reference Books:

1. Energy and the Challenge of Sustainability, World Energy Assessment, UNDP, New York, (2000).

2. Perspective of Modern Physics, A. Beiser, McGraw-Hill International Editions (1968).

3. Introduction to Modern Physics, H.S. Mani and G.K.Mehta, East-West Press (1988).

4. Introduction to Electrodynamics, D. J. Griffiths, Fourth Edition, Prentice Hall (2013).

5. Introductory Nuclear Physics, R. K. Puri and V.K. Babbar, Narosa Publishing House (1996).

6. Physics of Solar Cells: From Basic Principles to Advanced Concepts by Peter Wurfel, John Wiley & Sons, 2016

7. Principles of Solar Engineering, D.Y. Goswami, F.Kreith and J.F. Kreider, Taylor and Francis, Philadelphia, 2000.

Sample Questions:

Question No.	Questions
4	
1.	Explain the Units and scales of energy use.
2.	Brief the Mechanical energy and transport.
3.	Explain the Entropy and temperature
4.	How you will elaborate Phase change energy conversion ?
5.	What are the most contentious issues surrounding nuclear energy?
6.	What kind of resources does nuclear energy require? With this in mind, is it worth the effort and the investment to acquire nuclear energy?
7.	Are the impacts of the Chernobyl (Ukraine) and Three Mile Island (Pennsylvania) nuclear accidents still relevant today? If so, how?
8.	Exactly how important is nuclear power and nuclear waste?
9	Are there any major advances in technology on the horizon that I should hold out for? (e.g., plastics, nano, thin film, etc.)
10	Someone told me that the energy required to make PV panels is greater than they will every produce. True?

Assessment rubrics that is going to be adopted for direct attainment is depicted in below table

Level of Achievement	Elaboration on Course Grading Description	Bench Mark Set (Out of 100)
Excellent (A)	The Student's performance is outstanding in almost all the intended course learning outcomes	90 above
Good (B)	The student's performance is good in most of the intended course learning outcomes.	60-90
Marginal (C)	The student's performance is barely satisfactory. It marginally meets the intended course learning outcomes	35-60
Fail (F)	The Students performance is inadequate. Student fails to meet many of the intended course learning outcomes	Below 35